Topic 7 - Normal approximation to binomial random variables

Def: Let

$$
\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-x^{2} / 2} d x
$$

I is called the probability density function of the standard normal random somiable (topic 8)

In topic 8, we will see that

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=1
$$

1. Areas under the Normal Distribution

The table gives the cumulative probability up to the standardised nornal value z
i.e. \quad P[$Z<z]=\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right) d z$

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5159	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7854
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0,8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9865	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

[^0]Let's see how to calculate $\Phi(t)$ when $t \geqslant 0$

Ex: Calculate $\Phi(2.25)$

$$
\begin{array}{ccc}
z \cdots \cdots \cdots & 0.05 \\
\vdots & & \\
\vdots & & \\
2.2 & & \\
& & \\
0.9878
\end{array}
$$

$$
4 \begin{aligned}
& 2.25 \\
& =2.2+0.05
\end{aligned}
$$

So, $\Phi(2.25) \approx 0.9878$

Ex: Calculate $\Phi(1.36)$

So, $\Phi(1.36) \approx 0.9131$
Ex: Calculate $\Phi(0.4)$

So,

$$
\Phi(0.4) \approx 0.6554
$$

In the table they have

$$
\Phi(3,9) \approx 1
$$

but its smaller than 1 .
Would need a better table to get a better approximation,

If $t \geqslant 3.9$ you could approx.

$$
\Phi(t) \approx 1
$$

If's close to but less than 1.

How to calculate $\Phi(t)$ when $t<0$

Want: by symmetry $\left(\right.$ since $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ is an $\left.\begin{array}{l}\text { is an } \\ \text { function }\end{array}\right)$

But we have the above area is

So,

$$
\Phi(t)=1-\Phi(-t) \text { if } t<0
$$

Ex:

$$
\begin{aligned}
\Phi(-2.68) & =1-\Phi(2.68) \\
& \approx 1-0.9963 \approx 0.0037
\end{aligned}
$$

Theorem: (DeMoivre-Laplace Theorem) Let X be a binornial random variable with parameters n and p. Then for any real numbers a and b with $a<b$ we have that

$$
\begin{aligned}
& \text { with } a<b \text { We have } \\
& \begin{array}{l}
\lim _{n \rightarrow \infty} p\left(a \leq \frac{\bar{X}-n p}{\sqrt{n p(1-p)}} \leq b\right)=\Phi(b)-\Phi(a) \\
=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-x^{2} / 2} d x \\
\sigma_{X}=\sqrt{n \rho(1-p)}
\end{array}
\end{aligned}
$$

You can also do:

$$
\begin{aligned}
& \text { You can also do: } \\
& \lim _{n \rightarrow \infty} p\left(\frac{\bar{x}-n p}{\sqrt{n p(1-p)}} \leq b\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{b} e^{-x^{2} / 2} \\
&=\Phi(b)
\end{aligned}
$$

Ex: Suppose we flip a coin 10,000 times. Let X be the number of heads that occur.
Approximate the probability that $5000 \leq \overline{\mathbb{X}} \leq 5002$.

Here X is a binomial random variable with $n=10,000$ and $p=\frac{1}{2}$.
So, $n p=5000$ and $\sqrt{n p(1-p)}=\sqrt{2500}$ $=50$

Thus,

$$
\begin{aligned}
& P(5000 \leqslant \bar{\Sigma} \leqslant 5002) \\
& \begin{array}{r}
=P\left(\frac{5000-5000}{50} \leqslant \frac{\overline{X-5000}}{50} \leqslant\right.
\end{array} \begin{array}{r}
\left.\frac{5002-5000}{50}\right) \\
\\
\approx 0.04
\end{array} \\
& \approx P\left(0 \leqslant \frac{\bar{x}-5000}{50} \leqslant 0.04\right) \\
& \approx \Phi(0.04)-\Phi(0) \approx 0.5159 \\
& -0.5 \\
& \text { DeMoivre } \\
& \text { Laplace } \\
& \approx 0.0159 \\
& \approx 1.59 \%
\end{aligned}
$$

Ex: Suppose you flip a coin 40 times. Let $\mathbb{\text { be the }}$ number of heads.
Approximate $P(\bar{X}=20)$.

We have:

$$
\left.\begin{array}{l}
n=40 \\
p=\frac{1}{2}
\end{array}\right\} \begin{aligned}
& n p=20 \\
& \sqrt{n_{p}(1-p)}=\sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
& P(X=20)=P(19.5 \leq X \leq 20,5)
\end{aligned}
$$

$$
\begin{aligned}
& \approx P\left(-0.16 \leq \frac{\bar{x}-20}{\sqrt{10}} \leq 0.16\right) \\
& \text { Demajure } \\
& \left.\begin{array}{c}
\text { cap though } \\
\begin{array}{c}
\text { over } \\
n=40 \\
i s ~ i m a l l
\end{array}
\end{array}\right) \stackrel{\star}{\approx} \Phi(0.16)-\Phi(-0.16)
\end{aligned}
$$

$$
\begin{aligned}
& =\Phi(0.16)-[1-\Phi(0.16)] \\
& =2 \Phi(0 . t) \\
& =\Phi(t) \\
& \approx 2[0.5636]-1 \\
& \approx 0.1272 \approx 12.72 \%
\end{aligned}
$$

Is this accurate? Yes!

$$
\begin{aligned}
P(\bar{X}=20) & =\binom{40}{20} \cdot\left(\frac{1}{2}\right)^{20}\left(1-\frac{1}{2}\right)^{40-20} \\
& =\frac{137,846,528,820}{1,099,511,627,776} \\
& \approx 0.125371 \approx 12.54 \%
\end{aligned}
$$

[^0]: $\begin{array}{rrrrrrrrrr}2 & 3.00 & 3.10 & 3.20 & 3.30 & 3.40 & 3.50 & 3.60 & 3.70 & 3.80 \\ \mathrm{P} & 0.9986 & 0.9990 & 0.9993 & 0.9995 & 0.9997 & 0.9998 & 0.9998 & 0.9999 & 0.9999 \\ 1.0000\end{array}$

